Kinetics of peroxynitrite reaction with amino acids and human serum albumin.
نویسندگان
چکیده
An initial rate approach was used to study the reaction of peroxynitrite with human serum albumin (HSA) through stopped-flow spectrophotometry. At pH 7.4 and 37 degreesC, the second order rate constant for peroxynitrite reaction with HSA was 9.7 +/- 1.1 x 10(3) M-1 s-1. The rate constants for sulfhydryl-blocked HSA and for the single sulfhydryl were 5.9 +/- 0.3 and 3.8 +/- 0.8 x 10(3) M-1 s-1, respectively. The corresponding values for bovine serum albumin were also determined. The reactivity of sulfhydryl-blocked HSA increased at acidic pH, whereas plots of the rate constant with the sulfhydryl versus pH were bell-shaped. The kinetics of peroxynitrite reaction with all free L-amino acids were determined under pseudo-first order conditions. The most reactive amino acids were cysteine, methionine, and tryptophan. Histidine, leucine, and phenylalanine (and by extension tyrosine) did not affect peroxynitrite decay rate, whereas for the remaining amino acids plots of kobs versus concentration were hyperbolic. The sum of the contributions of the constituent amino acids of the protein to HSA reactivity was comparable to the experimentally determined rate constant, where cysteine and methionine (seven residues in 585) accounted for an estimated 65% of the reactivity. Nitration of aromatic amino acids occurred in HSA following peroxynitrite reaction, with nitration of sulfhydryl-blocked HSA 2-fold higher than native HSA. Carbon dioxide accelerated peroxynitrite decomposition, enhanced aromatic amino acid nitration, and partially inhibited sulfhydryl oxidation of HSA. Nitration in the presence of carbon dioxide increased when the sulfhydryl was blocked. Thus, cysteine 34 was a preferential target of peroxynitrite both in the presence and in the absence of carbon dioxide.
منابع مشابه
Study of Human Albumin Protein Interaction with Fluorouracil Anticancer Drug Using Molecular Docking Method
Introduction: Drugs are mainly delivered to the target tissues by plasma proteins, such as human serum albumin, in the human body. Practical information about the thermodynamic parameters of drugs and their stability can be obtained using simulation methods, such as molecular docking. Material & Methods: This study, investigated the molecular docking of human serum albumin with fluorouracil an...
متن کاملCo-amoxiclav Effects on the Structural and Binding Properties of Human Serum Albumin
Human serum albumin (HSA) is the most abundant plasma protein in the human body. HSA plays an important role in drug transport and metabolism. This protein has a high affinity to a very wide range of materials, including metals such as Cu2+ and Zn2+, fatty acids, amino acids and metabolites such as bilirubin and many drug compounds. In this study, we investigated the effects of co-amoxiclav, as...
متن کاملCo-amoxiclav Effects on the Structural and Binding Properties of Human Serum Albumin
Human serum albumin (HSA) is the most abundant plasma protein in the human body. HSA plays an important role in drug transport and metabolism. This protein has a high affinity to a very wide range of materials, including metals such as Cu2+ and Zn2+, fatty acids, amino acids and metabolites such as bilirubin and many drug compounds. In this study, we investigated the effects of co-amoxiclav, as...
متن کاملProtein Modification by Adenine Propenal
Base propenals are products of the reaction of DNA with oxidants such as peroxynitrite and bleomycin. The most reactive base propenal, adenine propenal, is mutagenic in Escherichia coli and reacts with DNA to form covalent adducts; however, the reaction of adenine propenal with protein has not yet been investigated. A survey of the reaction of adenine propenal with amino acids revealed that lys...
متن کاملبررسی پروفایل اسیدهای آمینهی سرم در نفروپاتی دیابتی
Background: Diabetic nephropathy is a chronic kidney disease and of more common complications of type 2 diabetes mellitus. The current diagnostic markers of diabetic nephropathy, albumin and creatinine, are only able to catch the disease in the stage of renal damage. The aim of this study is evaluation of targeted metabolomics of serum amino acids to identify the association of the changes of s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 274 2 شماره
صفحات -
تاریخ انتشار 1999